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ABSTRACT
Magnetic reconnection before flux cancellation in the solar photosphere when two opposite-polarity photospheric magnetic
fragments are approaching one another is usually modelled by assuming that a small so-called “floating current sheet" forms
about a null point or separator that is situated in the overlying atmosphere. Here instead we consider the reconnection that is
initiated as soon as the fragments become close enough that their magnetic fields interact. The resulting current sheet, which
we term a “fin sheet" extends up from the null point or separator that is initially located in the solar surface. We develop here
nonlinear analyses for finite-length models of both fin and floating current sheets that extend the previous models that were
limited to short floating current sheets. These enable the length of the current sheet to be calculated in both cases as functions
of the separation distance of the sources and the reconnection rate, as well as the rate of heating. Usually, the fin current sheet
liberates more energy than a floating current sheet.
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1 INTRODUCTION

Pontin et al. (2024) have proposed that magnetic reconnection driven
by photospheric flux cancellation may contribute substantially to the
heating of the solar corona and the acceleration of the solar wind.
Such reconnection has for long been associated with a range of
dynamic events in the solar atmosphere, such as X-ray right points
(Martin et al. 1985; Parnell et al. 1994; Priest et al. 1994; Parnell &
Priest 1995; Archontis & Hansteen 2014), X-ray jets (Shibata et al.
1992; Shimojo et al. 2007), UV bursts in active regions (Peter &
Dwivedi 2014), and transition-region explosive events (Brueckner &
Bartoe 1983; Innes et al. 1997). Flux cancellation was thought before
2010 to take place mainly near the boundaries of supergranules, since
that was where most of the photospheric magnetic flux observed at
that time was concentrated (e.g., Schrĳver et al. 1997; Priest 2014).

However, ground-breaking observations from the SUNRISE bal-
loon mission (Lagg et al. 2010; Solanki et al. 2011, 2017; Smitha
et al. 2017) have transformed our view by showing that flux can-
cellation is very much more common than previously thought and
often occurs around granules. This has been shown to imply that
flux cancellation may be a viable mechanism for heating the chro-
mosphere and corona (Priest et al. 2018), and a series of models
for the process has been developed (Priest & Syntelis 2021; Syntelis
et al. 2019; Syntelis & Priest 2020, 2021). In addition, clear exam-
ples of impulsively enhanced emission triggered by flux cancellation
have been discovered, including in coronal loops (Tiwari et al. 2014;
Huang et al. 2018), in association with UV bursts and birectional jets
(Chitta et al. 2017) and campfires (Panesar et al. 2021), in the cores
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of active regions (Chitta et al. 2018, 2020), and either between bipo-
lar footpoints or between such a footpoint and an opposite-polarity
photospheric magnetic fragment (Kahil et al. 2022).

In response to slow motions of the photospheric footpoints of coro-
nal magnetic fields on time-scales longer than the Alfvén travel time,
the magnetic field evolves through a series of magnetohydrostatic
equilibria. If the plasma pressure is much smaller than the magnetic
pressure and the height of the structure is less than the gravitational
scale-height, those equilibria will be force-free in nature, and, if the
electric currents are small, they will be potential magnetic fields.
When the equilibria are topologically complex, in the sense that they
possess null points or separator field-lines, then current sheets can
form around such nulls or separators and magnetic reconnection can
take place at them. Current sheets can also form in topologically
simple but geometrically complex configurations where nulls and
separators are absent but quasi-nulls or quasi-separators are present
(e.g., Pontin & Priest 2022, and references therein).

There are many ways in which current sheets can appear and
evolve, as described in Priest (2014). Several techniques have been
employed for modelling current sheets, each of which have pros and
cons (Priest 2014). For modelling the appearance and slow evolution
of current sheets in two dimensions, an invaluable and elegant tech-
nique is to use complex variable theory, as first proposed by Green
(1965) and Tur & Priest (1976). Modelling them in three dimensions
is much more difficult, since complex variable theory is no longer
valid, but a method has been developed by Priest & Syntelis (2021)
for an axisymmetric three-dimensional sheet by treating the sheet
as a series of current rings (see also Longcope 1996; Longcope &
Cowley 1996). For non-axisymmetric fields or to describe the time-
dependent fragmentation of sheets into plasmoids or flux ropes, it is
generally necessary instead to use computational MHD modelling.
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In this paper, on grounds of simplicity and ease of determination of
the response to varying the reconnection rate or the footpoint loca-
tions, we model current sheets as two-dimensional structures in an
ambient potential field.

In general, several types of models may be constructed that com-
plement one another and give different insights about the basic
physics of complex solar phenomena. On the one hand, it is pos-
sible to develop complex three-dimensional computational models
that include as much realistic physics as possible. These can produce
images or spectra that may be compared with detailed observations
and have led to great advances in interpreting the observations. How-
ever, they are often extremely difficult to understand and are unable to
"simulate” fully the observations, since there is always some physics
that is omitted and they cannot achieve the spatial resolution that is
necessary for a full understanding. In addition, they can be run for
only a few specific ranges of parameters and for limited time, due to
computational constraints. Here we adopt an alternative philosophy
of constructing much simpler, largely analytical models, in which
one can easily see the effects of a wide range of parameters. They use
in-depth physical understanding to focus on key physical processes
(here magnetohydrodynamic) while omitting others, but they are also
able to produce key advances in understanding in order to interpret
observations and to guide future computational experiments.

When two photospheric magnetic flux patches of opposite polar-
ity approach one another, reconnection may be initiated at a current
sheet between them. Previous modelling has assumed the current
sheet forms about a null point or separator that is situated above the
solar surface, typically in the corona, so that the current sheet is also
detached from the surface, a situation that we refer to as a “floating"
current sheet. However, there is significant evidence that the recon-
nection may in fact occur lower in the atmosphere. Transient Ca II H
brightenings observed by Hinode (Park & Chae 2012) suggest that re-
connection associated with flux cancellation may be happening in the
chromosphere or even in the photosphere (Litvinenko 2015). Nelson
et al. (2013) present both observations and simulations of Ellerman
Bombs initiated when flux cancellation drives magnetic reconnection
at chromospheric heights. Shelyag et al. (2018) analysed simulations
of magnetoconvection, identifying numerous discrete flux cancella-
tion events in which the associated magnetic reconnection occurred
in the photospheric layer in a so-called flux pile-up regime.

We here consider an alternative scenario to that of a floating current
sheet, in which the current sheet grows up from the photosphere as
the flux patches approach, and we call this a “fin” current sheet due to
its resemblance to the dorsal fin of a sea mammal (Section 2). Related
ideas were considered briefly by Low & Wolfson (1988); Low (1992).
Such initially low-lying sheets may be important when energy is
released low in the atmosphere, as, for example in Ellerman bombs
in the low chromosphere (Rouppe van der Voort et al. 2016; Hansteen
et al. 2017). In addition, we generalise the previous modelling of a
floating current sheet by dropping the previous assumption that the
current sheet be “small" in the sense that its vertical dimension is
much smaller than the typical distance between flux sources (see
Section 3).

Both floating and fin current sheets are likely to be important in the
solar atmosphere, but their presence depends on the nature of both
the magnetic topology and the motion of the phospheric magnetic
fragments which can be regarded as acting as sources for coronal
magnetic fields. If the topology is relatively simple and one starts with
two isolated magnetic fragments that are not connected magnetically,
then, as they approach one another, their magnetic fields will come
into contact and a fin current sheet will naturally form. On the other
hand, if the flux sources are initially connected magnetically and they

start to move towards one another, then their motion will drive the
formation of a floating current sheet along the separator or around
the null point that was initially present. Considering a region whose
topology is complex with null points or separators being present,
the motion of photospheric footpoints will naturally form floating
current sheets.

The paper is organised as follows. In Section 2 we present a new
model for reconnection at a fin current sheet. Then in Section 3 we
extend previous models of a floating current sheet to finite length
sheet. Finally, in Section 4 we present a discussion, including a
comparison of the energy release in the two cases.

2 FIN CURRENT SHEET MODEL

2.1 Magnetic Field Model

Consider a two-dimensional magnetic field (𝐵𝑥 , 𝐵𝑦) in the solar
corona (represented by the half-space 𝑦 > 0) generated by two
patches of magnetic flux in the presence of a uniform background
horizontal field (𝐵0x̂) of strength 𝐵0. For simplicity we model the flux
patches (which represent magnetic flux that is generated in the solar
interior and is threading through the solar surface into the corona) as
point sources located at 𝑥 = ±𝑑 on the 𝑦-axis. We denote the half-
separation of the sources as 𝑑 (see Fig. 1) and consider what happens
as 𝑑 decreases so that the flux patches approach one another. Here
we suppose that the time-scale for approach is much longer than the
Alfvén travel time, so that the approach speed is much smaller than
the Alfvén speed, and the evolution is quasi-static through a series
of potential fields. The resulting potential magnetic field is given by

B =
𝐹r̂1
𝜋 |r1 |

− 𝐹r̂2
𝜋 |r2 |

+ 𝐵0 x̂, (1)

where

r1,2 = (𝑥 ± 𝑑) x̂ + 𝑦ŷ

are the vector positions of the point (𝑥, 𝑦) relative to the two sources
and ±𝐹 are the strengths of the sources.

The so-called “flux interaction distance" (Longcope 1998) is given
by

𝑑0 ≡ 2𝐹
𝜋𝐵0

. (2)

When the sources are sufficiently far apart (𝑑 > 𝑑0), the two sources
are not joined by any magnetic field lines, but two magnetic null
points are located between them on the 𝑥-axis (Fig. 1a). As the
parameter 𝑑 is decreased, the two null points approach one another,
and when 𝑑 = 𝑑0 they will coincide at the origin (Fig. 1b). For the
magnetic field described in Eqn.(1), the 𝑥-component of the magnetic
field on the 𝑦-axis is

𝐵𝑥 = 𝐵0

(
1 − 𝑑0𝑑

𝑦2 + 𝑑2

)
,

and so, when 𝑑 < 𝑑0, there is a null point present on the positive
𝑦-axis, located at 𝑦𝑁 =

√︁
𝑑0𝑑 − 𝑑2.

Now, consider what happens as the sources approach one another,
starting from 𝑑 > 𝑑0 and ending up with 𝑑 < 𝑑0. In a vacuum, the
magnetic field would simply pass through a series of potential fields
as the two null points on the 𝑥-axis approach one another, merge,
and then a null point lifts off the surface along the 𝑦-axis, while
the fields continuously change their topology. However, in an ideal
plasma, changes of topology are not allowed and so a current sheet
would form with a length determined by magnetic flux conservation,

MNRAS 000, 1–10 (2024)
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Figure 1. Two magnetic flux sources of flux ±𝐹 are situated on the 𝑥-axis a distance 2𝑑 apart in the presence of an overlying uniform magnetic field 𝐵0. The
distances from the sources to a point P(𝑥, 𝑦) are given by vectors r1 and r2. As 𝑑 decreases and the sources approach one another, there are several stages: (a)
when 𝑑 > 𝑑0 = 2𝐹/(𝜋𝐵0 ) , there are two linear null points (large dots) on the 𝑥-axis; (b) when 𝑑 = 𝑑0, the nulls combine to form a second-order null; (c) when
𝑑 < 𝑑0, a current sheet forms of length 𝐿 at which the inflowing magnetic field is 𝐵𝑖 and the inflow speed is 𝑣𝑖 .

as shown in Fig. 1c. Again, in a non-ideal plasma with, for example,
finite resistivity, the reconnection rate would determine the changes
in magnetic fluxes and therefore the size of the current sheet, as
follows.

To represent the idealised magnetic field containing a tangential
discontinuity we follow Green (1965); Syrovatsky (1971); Tur &
Priest (1976) in using a complex-variable representation with 𝑧 =

𝑥 + 𝑖𝑦. We can write the magnetic field (1) as

𝐵𝑥 − 𝑖𝐵𝑦 = 𝐵0

(
1 + 𝑑0

2(𝑧 − 𝑑) −
𝑑0

2(𝑧 + 𝑑)

)
= 𝐵0

𝑧2 − 𝑑2 + 𝑑0𝑑

𝑧2 − 𝑑2 . (3)

When 𝑑 = 𝑑0 this reduces to 𝐵𝑥 − 𝑖𝐵𝑦 = 𝐵0𝑧
2/(𝑧2 − 𝑑2

0), and so
for 𝑑 < 𝑑0 we choose a magnetic field that possesses flux sources
at 𝑧 = ±𝑑, tends to 𝐵𝑥 = 𝐵0 at infinity, includes a branch cut from
𝑧 = 𝑖𝐿 to 𝑧 = −𝑖𝐿 to represent the current sheet, and reduces to the
same form when 𝐿 = 0, namely,

𝐵𝑥 − 𝑖𝐵𝑦 = 𝐵0
𝑧(𝑧2 + 𝐿2)1/2

𝑧2 − 𝑑2 . (4)

For the upper half plane (𝑧 ≥ 0), this has a fin current sheet (a cut in
the positive complex plane (𝑦 ≥ 0)) from 𝑦 = 0 to 𝑦 = 𝐿.

2.2 Fin Current Sheet Length (L(d)) with no Reconnection

The length of the current sheet (𝐿) is expected to be a function of the
source separation (2𝑑). It is determined by a constraint that comes
from conservation of the flux above the current sheet. Consider first
the case where reconnection is prohibited. In that case the flux above
the current sheet must remain fixed as the flux patches approach one
another. In order to calculate this flux we note that, for 𝑑 < 𝑑0,
Eqn.(4) gives the following expressions for the field components on
the 𝑦-axis

𝐵𝑥 = 𝐵0

{
0 𝑦 < 𝐿

𝑦(𝑦2 − 𝐿2)1/2/(𝑦2 + 𝑑2) 𝑦 > 𝐿

𝐵𝑦 = 𝐵0

{
±𝑦(𝐿2 − 𝑦2)1/2/(𝑦2 + 𝑑2) 𝑦 < 𝐿

0 𝑦 > 𝐿.
(5)

Thus, equating the flux across the 𝑦-axis between 𝑦 = 𝐿 and 𝑦 = ∞
when 𝑑 < 𝑑0 to the corresponding flux between 𝑦 = 0 and 𝑦 = ∞

when 𝑑 = 𝑑0 yields∫ ∞

𝐿

𝑦(𝑦2 − 𝐿2)1/2

𝑦2 + 𝑑2 d𝑦 =

∫ ∞

0

𝑦2

𝑦2 + 𝑑2
0

d𝑦.

Since both of these integrals are infinite due to the presence of the
uniform component 𝐵0 x̂ in Eqn.(1), we subtract the integral over the
uniform field out to infinity from both sides to give

𝐿 +
∫ ∞

𝐿
1 − 𝑦(𝑦2 − 𝐿2)1/2

𝑦2 + 𝑑2 d𝑦 =

∫ ∞

0
1 − 𝑦2

𝑦2 + 𝑑2
0

d𝑦,

where the right-hand side is simply∫ ∞

0

𝑑2
0

𝑦2 + 𝑑2
0

d𝑦 =

[
𝑑0 arctan

𝑦

𝑑0

]∞
0

=
𝜋

2
𝑑0.

Next, in order to solve this equation for 𝐿 (𝑑), we adopt a change
of variable, setting 𝑢 = 𝑦/𝐿, which reduces it to

𝐿

(
1 +

∫ ∞

1
1 − 𝑢(𝑢2 − 1)1/2

𝑢2 + (𝑑2/𝐿2)
d𝑢

)
=

𝜋

2
𝑑0, (6)

the solution of which is surprisingly simple (see Appendix A),
namely,

𝐿 (𝑑) =
√︃
𝑑2

0 − 𝑑2, (7)

so that the current sheet length (𝐿) vanishes at 𝑑 = 𝑑0 (as required),
and it tends to 𝑑0 as 𝑑 approaches zero, as shown by the black curve
in Fig. 2(a).

2.3 Fin Current Sheet Length with Reconnection

If the plasma is not perfectly ideal, then, during the time that the
flux patches approach one another, reconnection will commence in
the current sheet. This will add flux above the current sheet, and the
current sheet length will become smaller than when reconnection
is prohibited. It is then possible to determine the sheet length (𝐿),
the inflow speed (𝑣𝑖) and the inflow magnetic field (𝐵𝑖) in terms
of the imposed values of the flux source separation (2𝑑), the speed
of approach (𝑣0) of the sources, and the overlying magnetic field
strength (𝐵0), as follows.

The magnetic flux (𝐹𝑅) added above the current sheet is equal to
the net flux (𝜓) into the sheet, namely,

𝐹𝑅 =

∫
𝑑𝜓

𝑑𝑡
d𝑡 =

∫
𝑣𝑖𝐵𝑖 d𝑡,

MNRAS 000, 1–10 (2024)
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(a)

(b)

Figure 2. (a) Fin current sheet length 𝐿/𝑑0 as a function of source separation
𝑑/𝑑0 in units of the flux interaction distance (𝑑0 = 2𝐹0/(𝜋𝐵0 )), where ±𝐹0
are the fluxes of the sources and 𝐵0 is the strength of the overlying field.
The sheet length in the absence of reconnection is shown in black and for
𝐶 = 𝛼/𝑀𝐴0 = 0.1, 1, 5 in red, green and blue, respectively. (b) Inflow
magnetic field strength 𝐵𝑖/𝐵0 for the same values of 𝐶.

Figure 3. Rate of thermal energy release as a function of source separation 𝑑

for the fin current sheet model, with 𝐶 = 𝛼/𝑀𝐴0 = 0.1, 1 and 5 (red, green,
and blue, respectively).

and, after defining the speed of approach of the flux sources as
𝑣0 = d(𝑑)/d𝑡, this becomes

𝐹𝑅 =

∫
𝑣𝑖

𝑣0
𝐵𝑖 d𝑑. (8)

In order to estimate the flux reconnected, we need to assume a
typical inflow speed (𝑣𝑖 = 𝛼𝑣𝐴𝑖) to the reconnection site in terms of
the local Alfvén speed (𝑣𝐴𝑖), where 𝛼 depends on the nature of the
reconnection and the rate at which it is being driven, as described
in, e.g., Priest (2014). Thus, reconnection may be slow, with 𝛼 being
tiny (say, 10−6) or it may be fast, with the maximum value of 𝛼 for
various fast models being in the range 0.01 − 0.1 (e.g., Priest 2014;
Cassak et al. 2017; Pontin & Priest 2022). Then the ratio of the inflow
speed to the driving speed becomes
𝑣𝑖

𝑣0
=

𝛼𝑣𝐴𝑖

𝑣0
=

𝛼𝑣𝐴0
𝑣0

𝐵𝑖

𝐵0
=

𝛼

𝑀𝐴0

𝐵𝑖

𝐵0
, (9)

where 𝑀𝐴0 = 𝑣0/𝑣𝐴0 and 𝑣𝐴0 = 𝐵0/
√
𝜇𝜌𝑖 is the Alfvén speed based

on the overlying magnetic field (𝐵0) and the density (𝜌𝑖) at the inflow
to the current sheet. Thus, Equation (8) can be written as

𝐹𝑅 = 𝐶𝐵0𝑑0

∫
𝐵2
𝑖

𝐵2
0

d𝑑/𝑑0, (10)

where 𝐶 = 𝛼𝑣𝐴0/𝑣0 is a dimensionless constant. In this and in what
follows, we for simplicity assume that 𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, but, if 𝛼 is non-
constant, the resulting energy release will lie between the different
curves associated with 𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Hence, we modify Eqn.(6) to include the reconnected flux to give

𝐿

(
1 +

∫ ∞

0
1 − 𝑢(𝑢2 − 1)1/2

𝑢2 + (𝑑2/𝐿2)
d𝑢

)
=

𝜋

2
𝑑0−𝐶𝑑0

∫ 𝑑

𝑑0
(𝐵𝑖/𝐵0)2 d𝑑/𝑑0.

(11)

To estimate 𝐵𝑖 we use the value at the centre of sheet, by substituting
𝑦 = 1

2 𝐿 into Eqn.(5), giving

𝐵𝑖 = 𝐵0

√
3𝐿2

𝐿2 + 𝑑2 . (12)

Substituting into Eqn.(11) and evaluating the integral on the left-hand
side yields

𝜋

2

√︁
𝐿2 + 𝑑2 =

𝜋

2
𝑑0 − 𝐶

∫ 𝑑0

𝑑

3𝐿4

(𝐿2 + 𝑑2)2
d𝑑,

which we wish to solve for the unknown function 𝐿 (𝑑).
To solve this equation for 𝐿 (𝑑) we first differentiate to obtain

𝐿
d𝐿
d𝑑

+ 𝑑 = 𝐶
6𝐿4

𝜋(𝐿2 + 𝑑2)3/2
. (13)

This can be integrated numerically to find 𝐿 (𝑑) using the initial
condition that 𝐿 (𝑑0) = 0. In practice we perform the integration from
𝑑 = 𝑑0 (1− 𝜖) with 𝜖 ≪ 1 since d𝐿/d𝑑 tends to −∞ as 𝑑 approaches
𝑑0. To find this initial condition we use the known solution without
reconnection (Eq. 7) to approximate

𝐿 (𝑑0 (1 − 𝜖)) = 𝑑0

√︃
1 − (1 − 𝜖)2 ≈

√︁
2𝜖𝑑0. (14)

Since 𝛼 may vary between, say, 0.001 and 0.1, while 𝑀𝐴0 varies
between, say, 0.001 and 0.01 for 𝑣0 = 1 km s−1 and 𝑣𝐴0 = 103

km s−1, 𝐶 = 𝛼/𝑀𝐴0 varies between 0.1 and 100. The current sheet
length as a function of 𝑑 is plotted for selected values of 𝐶 in Figure
2(a). Expressions when 𝐶 is small or large are derived in Appendix
B.

MNRAS 000, 1–10 (2024)
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Figure 4. The nomenclature for a floating current sheet. (a) An initial potential state with a null point at height 𝑦𝑁 < 𝑑0 due to two opposite polarity sources a
distance 2𝑑𝑁 apart in a uniform horizontal field (𝐵0). (b) The field that is formed as the sources approach one another with speeds 𝑣0 to a separation distance
of 2𝑑 < 2𝑑𝑁 , giving rise to a current sheet of length 𝐿 stretching from 𝑦1 to 𝑦2 on the 𝑦-axis, at which the inflow speed and magnetic field are 𝑣𝑖 and 𝐵𝑖 ,
respectively.

2.4 Heating Rate

The values of the inflow speed (Eq. 9) and inflow magnetic field
(Eq. 12), together with the current sheet length (Fig. 2), allow us to
investigate how the rate of magnetic energy release depends on time
and on the parameters.

The rate at which magnetic energy is transported into the current
sheet is given by the Poynting flux into the two sides of the sheet,
and, if two fifths of this energy is converted into thermal energy in
standing slow-mode shocks (Priest 2014), then the heating rate is

d𝑊
d𝑡

=
4
5
𝑣𝑖𝐵

2
𝑖

𝜇0
𝐿𝐿𝑆 ,

for our two-dimensional model, where 𝐿𝑆 is the extent of the current
sheet out of the plane. In this expression, the inflow speed to the
current sheet is 𝑣𝑖 = 𝛼𝑣𝐴𝑖 = 𝛼𝑣𝐴0𝐵𝑖/𝐵0, and so the heating rate
may be written

d𝑊
d𝑡

=
d𝑊0
d𝑡

(
𝐵𝑖

𝐵0

)3
𝐿

𝑑0
, (15)

where 𝑑𝑊0/𝑑𝑡 = 0.8𝛼𝐵3
0𝑑0𝐿𝑆/[

√
𝜇𝜌𝑖𝜇]. The resulting heating rate

after substituting for 𝐵3
𝑖

and 𝐿 is shown in Fig. 3 for several values
of the parameter 𝐶.

3 A FLOATING CURRENT SHEET

3.1 General Treatment and Numerical Solution

The so-called ‘floating current sheet’ occurs when reconnection is
initiated after a null point has formed in the corona, as studied pre-
viously by Priest et al. (2018) and Syntelis et al. (2019). However,
they assumed that 𝑑 is close to its initial value 𝑑𝑁 , say, so that the
magnetic field is close to potential and the current sheet is very short
(𝐿 ≪ 𝑑). In this section we therefore improve and generalise their
analysis to long current sheets and nonpotential magnetic fields so
as to be able to compare the results for a floating current sheet with
those of a fin current sheet.

The improved technique employed here for calculating the three
unknown variables, namely, the current sheet length (𝐿) and the
inflow speed (𝑣𝑖) and field (𝐵𝑖) to the current sheet, may be compared

with the earlier technique for short current sheets adopted by Syntelis
et al. (2019) and Priest et al. (2018). Here we simply use the two flux
conditions above and below the sheet for 𝐿 and 𝐵𝑖 and then deduce 𝑣𝑖
from the reconnection rate (𝑣𝑖 = 𝛼𝑣𝐴𝑖 , see Equation (9) above). The
earlier technique assumed as the first condition that 𝐵𝑖 = 1

2 𝑘𝐿, where
𝑘 comes from the form of the potential field near the null, and this
gives the same result as Equation (26) below. The second condition
was that the time rate of change of flux ejected below or above the
sheet is equal to the flux (𝑣𝑖𝐵𝑖) into the current sheet, which relates
𝐿 to 𝑣𝑖 . The final condition was the same as here, namely, 𝑣𝑖 = 𝛼𝑣𝐴𝑖 .

Suppose the magnetic field is in a potential state with no current
sheet when the source separation is 𝑑𝑁 (Fig.4a), so that its magnetic
field in complex form is

𝐵𝑥 − 𝑖𝐵𝑦 = 𝐵0

(
𝑧2 − 𝑑2

𝑁
+ 𝑑0𝑑𝑁

𝑧2 − 𝑑2
𝑁

)
, (16)

where 𝑧 = 𝑥+ 𝑖𝑦. This has a null point at 𝑦 = 𝑦𝑁 on the 𝑦-axis, where

𝑦2
𝑁 = 𝑑0𝑑𝑁 − 𝑑2

𝑁 ,

and the magnetic field on the 𝑦-axis is

𝐵𝑥 (0, 𝑦) = 𝐵0

(
1 − 𝑑0𝑑𝑁

𝑦2 + 𝑑2
𝑁

)
,

so that the magnitude of the magnetic flux below the null point is

𝜓𝑁 =

∫ 𝑦𝑁

0
−𝐵𝑥 (0, 𝑦) 𝑑𝑦 = 𝐵0

(
−𝑦𝑁 + 𝑑0 arctan

𝑦𝑁

𝑑𝑁

)
. (17)

On the other hand, the total magnetic flux (𝜓𝑇 ) across the 𝑦-axis
is just

𝜓𝑇 =

∫ ∞

0
𝐵0 𝑑𝑦 − 𝐹,

since a flux of amount F coming in from the left is diverted into the
negative source. The magnetic flux above the null point is therefore∫ ∞

𝑦𝑁

𝐵𝑥 (0, 𝑦) 𝑑𝑦 = 𝜓𝑇 + 𝜓𝑁 =

∫ ∞

0
𝐵0 𝑑𝑦 − 𝐹 + 𝜓𝑁 ,

since an extra flux of magnitude 𝜓𝑁 has been reconnected across the
null point into the regions above and below it. Although this integral
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6 E.R. Priest and D. I. Pontin

(a)

(b)

(c)

Figure 5. Parameters of the current sheet for the floating sheet model when
the initial source separation (2𝑑𝑁 ) equals 𝑑0, where 𝑑0 is the flux interaction
distance. (a) The endpoints 𝑦1 (blue) and 𝑦2 (red) of the current sheet in the
absence of reconnection (𝐶 = 0, dashed curves) and for 𝐶 = 5 (solid curves).
(b) The length (𝐿) of the floating current sheet (𝐿 = 𝑦2 − 𝑦1), as well as (c)
the magnetic field (𝐵𝑖) at the input to the current sheet, for 𝐶 = 0 (black),
𝐶 = 0.1 (red), 𝐶 = 1 (green), and 𝐶 = 5 (blue). The approximations when 𝑑

is close to 𝑑𝑁 (for 𝐶 = 0) are shown as dashed curves in parts (b) and (c).

is infinite in view of the uniform field 𝐵0 extending to infinity, it is
useful to recast it as∫ ∞

𝑦𝑁

(𝐵𝑥 (0, 𝑦) − 𝐵0) 𝑑𝑦 = 𝐵0𝑦𝑁 − 𝐹 + 𝜓𝑁 , (18)

where 𝐹 = 1
2𝜋𝐵0𝑑0.

Then suppose the sources approach one another at speeds 𝑣0,

(a)

(b)

Figure 6. (a) The rate of energy release for a floating current sheet with
𝑑𝑁 = 1

2 𝑑0 and 𝐶 = 0.1, 1, 5. (b) Comparison of the energy release rate for
a fin current sheet (dashed) and floating current sheet (solid lines) for 𝐶 = 1
(green), and 𝐶 = 5 (blue).

so that their separation is 2𝑑 and a current sheet of length 𝐿 forms,
stretching along the 𝑦-axis from 𝑦1 to 𝑦2 (Fig.4b). Then the magnetic
field may be represented by

𝐵𝑥 − 𝑖𝐵𝑦 = 𝐵0
(𝑧2 − 𝑧2

1)
1/2 (𝑧2 − 𝑧2

2)
1/2

𝑧2 − 𝑑2 ,

MNRAS 000, 1–10 (2024)



Solar atmospheric heating at a fin current sheet 7

so that along the 𝑦-axis

𝐵𝑦 = 0, 𝐵𝑥 (0, 𝑦) = −𝐵0
(𝑦2

1 − 𝑦2)1/2 (𝑦2
2 − 𝑦2)1/2

𝑦2 + 𝑑2 , (19)

when 𝑦 < 𝑦1,

𝐵𝑥 = 0, 𝐵𝑦 (0, 𝑦) = ±𝐵0
(𝑦2 − 𝑦2

1)
1/2 (𝑦2

2 − 𝑦2)1/2

𝑦2 + 𝑑2 , (20)

when 𝑦1 < 𝑦 < 𝑦2,

𝐵𝑦 = 0, 𝐵𝑥 (0, 𝑦) = 𝐵0
(𝑦2 − 𝑦2

1)
1/2 (𝑦2 − 𝑦2

2)
1/2

𝑦2 + 𝑑2 , (21)

when 𝑦 > 𝑦2.

The current sheet endpoints (𝑦1 and 𝑦2) and therefore the length 𝐿

of the current sheet are then given by the conservation of flux above
and below the current sheet, namely,∫ 𝑦1

0
−𝐵𝑥 (0, 𝑦) 𝑑𝑦 =

∫ ∞

𝑦2
(𝐵𝑥−𝐵0) 𝑑𝑦+ 1

2𝜋𝐵0𝑑0−𝐵0𝑦2 = 𝜓𝑁+𝐹𝑅 ,

(22)

where an argument similar to deriving Eqn.(18) has been used. Here
𝐵𝑥 (0, 𝑦) is given by Eqns.(19), (21), 𝜓𝑁 by Eqn.(17), and the recon-
nected flux (𝐹𝑅) by an equation similar to Eqn.(10), namely,

𝐹𝑅 = 𝐶𝐵0𝑑0

∫ 𝑑

𝑑𝑁

𝐵2
𝑖 d𝑑, (23)

with 𝐶 = 𝛼𝑣𝐴0/𝑣0. In this expression for 𝐹𝑅 , the function 𝐵𝑖 (𝑑),
namely, the field just outside the midpoint (𝑦𝑁 ) of the current sheet is
given by the value of 𝐵𝑦 from Eqn.(20) evaluated at 𝑦𝑁 = 1

2 (𝑦1+𝑦2),
namely,

𝐵𝑖 = 𝐵0
(𝑦2 − 𝑦1) (𝑦2 + 3𝑦1)1/2 (3𝑦2 + 𝑦1)1/2

(𝑦1 + 𝑦2)2 + 4𝑑2 . (24)

Thus, 𝐵𝑖 and 𝐿 are given by the coupled equations (22), (23), and
(24). The resulting solutions can be obtained numerically as follows.
When 𝑑 = 𝑑0, 𝑦1 = 𝑦2 = 𝑦𝑁 and 𝐹𝑅 = 0. Starting from these values,
𝑑 is decreased by small increments from 𝑑 = 𝑑0 to 𝑑 = 0. For each
value of 𝑑 the pair of equations in Eq. (22) is solved for 𝑦1 and 𝑦2
using the fsolve command in MapleTM 1. These values are then
used to find 𝐵𝑖 from (24) and then to update 𝐹𝑅 from (23), following
which 𝑑 is decreased by a small increment and the process repeated.
The numerical solutions are plotted in Fig.5 for 𝑑𝑁 = 0.5𝑑0 and
𝐶 = 0, 0.1, 1 and 5. In the limit as the current sheet length becomes
small compared with the flux interaction distance (𝐿 ≪ 𝑑0), we show
in the following section that these reduce to

𝐵𝑖 = 𝐵0

(
𝑑0
𝑑𝑁

− 1
)1/2

𝐿

𝑑0
,

as in Syntelis et al. (2019), and

𝐿2

𝑑2
0

log𝑒
𝑑0
𝐿

=
𝑓 (𝑑𝑁 /𝑑0)

(𝑑𝑁 /𝑑0 − 1)1/2
𝐷

𝑑0
,

where

𝑓

(
𝑑𝑁

𝑑0

)
=

(
𝑑0
𝑑𝑁

− 2
)

arctan

√︄
𝑑0
𝑑𝑁

− 1 +

√︄
𝑑0
𝑑𝑁

− 1.

The rate of energy release is given by the same expression as for
the fin current sheet, namely, Eqn.(15), but with 𝐵𝑖 and 𝐿 now given
by Eqns.(22)–(24). It is plotted in Fig.6a for 𝐶 = 0.1, 1 and 5.

1 Maple is a trademark of Waterloo Maple Inc.

3.2 The Current Sheet Length and Inflow Magnetic Field when
the Sheet is Short

Consider the floating current sheet illustrated in Fig.4. Initially, the
source separation is 2𝑑𝑁 and the magnetic field (16) is

𝐵𝑥 − 𝑖𝐵𝑦 = 𝐵0
𝑧2 + 𝑦2

𝑁

𝑧2 − 𝑑2
𝑁

,

which is potential and possesses a null point at height 𝑦𝑁 given by

𝑦2
𝑁 = 𝑑0𝑑𝑁 − 𝑑2

𝑁 .

The magnetic flux (17) below the null point can be written

𝜓𝑁 = −𝐵0

∫ 𝑦𝑁

0

𝑦2
𝑁
− 𝑦2

𝑦2 + 𝑑2
𝑁

𝑑𝑦.

When the sources approach one another to a separation 2𝑑 < 2𝑑𝑁 ,
a vertical current sheet forms stretching from 𝑧1 to 𝑧2 on the 𝑦-axis
(Fig. 4b), and the magnetic field becomes

𝐵𝑥 − 𝑖𝐵𝑦 = 𝐵0
(𝑧2 − 𝑧2

1)
1/2 (𝑧2 − 𝑧2

2)
1/2

𝑧2 − 𝑑2 .

The resulting flux below the current sheet can then be written

𝜓𝑆 = −𝐵0

∫ 𝑦1

0

(𝑦2
1 − 𝑦2)1/2 (𝑦2

2 − 𝑦2)1/2

𝑦2 + 𝑑2 𝑑𝑦 + 𝐹𝑅 ,

where 𝐹𝑅 is the reconnected flux.
The value of the current sheet length when 𝑑 is close to 𝑑𝑁 , so that

the sheet length (𝐿) is much smaller than 𝑑𝑁 , is given by equating
the two fluxes 𝜓𝑁 and 𝜓𝑆 and linearising by writing 𝑦1 = 𝑦𝑁 − 𝑌1,
𝑦2 = 𝑦𝑁 + 𝑌2, and 𝑑 = 𝑑𝑁 − 𝐷, where 𝑌1 ≪ 𝑦𝑁 , 𝑌2 ≪ 𝑦𝑁 , and
𝐷 ≪ 𝑑𝑁 . Then, equating 𝜓𝑆 and 𝜓𝑁 and omitting 𝐹𝑅 since it is
of higher order in the small quantities than those we shall ultimately
keep,∫ 𝑦1

0

(𝑦2
1 − 𝑦2)1/2 (𝑦2

2 − 𝑦2)1/2

𝑦2 + 𝑑2 𝑑𝑦 =

∫ 𝑦𝑁

0

𝑦2
𝑁
− 𝑦2

𝑦2 + 𝑑2
𝑁

𝑑𝑦.

After subtracting the integral of the initial flux up to 𝑦 = 𝑦1 from
both sides, this may be rewritten

𝐼𝐵 = 𝐼𝐶 + 𝐼𝐴,

where

𝐼𝐵 =

∫ 𝑦1

0

(𝑦2
1 − 𝑦2)1/2 (𝑦2

2 − 𝑦2)1/2 − (𝑦2
𝑁
− 𝑦2)

𝑦2 + 𝑑2 𝑑𝑦,

𝐼𝐶 =

∫ 𝑦𝑁

0

𝑦2
𝑁
− 𝑦2

𝑦2 + 𝑑2
𝑁

−
𝑦2
𝑁
− 𝑦2

𝑦2 + 𝑑2 𝑑𝑦,

which are evaluated in Appendix C, and

𝐼𝐴 =

∫ 𝑦𝑁

𝑦1

𝑦2
𝑁
− 𝑦2

𝑦2 + 𝑑2 𝑑𝑦.

Each of these integrals is small, and, since 𝐼𝐵 ∼
𝐿2𝑦𝑁 log𝑒 𝐿/(𝑑0𝑑𝑁 ), 𝐼𝐶 ∼ 𝐷, and 𝐼𝐴 ∼ 𝐿2𝑦𝑁 /(𝑑0𝑑𝑁 ), we shall
to lowest order neglect 𝐼𝐴 compared with the other two integrals.
Thus, equating the expressions (C1) for 𝐼𝐵 and (C2) for 𝐼𝐶 in Ap-
pendix C, we obtain the result that

𝐿2

𝑑2
0

log𝑒
𝑑0
𝐿

=
4 𝑓 (𝑑𝑁 /𝑑0)

(𝑑0/𝑑𝑁 − 1)1/2
𝐷

𝑑0
, (25)
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8 E.R. Priest and D. I. Pontin

so that the current sheet length (𝐿) in the combination 𝐿2 log𝑒 𝐿 is
proportional to the small displacement (𝐷) of the sources from 𝑑𝑁 ,
where 𝑓 (𝑑𝑁 /𝑑0) is given by Eq.(C3). When 𝑑𝑁 is close to 𝑑0, this
is well behaved, since the expression for 𝐿 behaves like

𝐿2

𝑑2
0

log𝑒
𝑑0
𝐿

=
4(𝑑0/𝑑𝑁 − 1)2

3
𝐷

𝑑0
,

which is plotted as the dashed curve in Fig. 5b.
Furthermore, Equation (24) for the magnetic field at the inflow to

the current sheet, namely,

𝐵𝑖 = 𝐵0
(𝑦2 − 𝑦1) (𝑦2 + 3𝑦1)1/2 (3𝑦2 + 𝑦1)1/2

(𝑦1 + 𝑦2)2 + 4𝑑2 .

may be approximated to lowest order for short current sheets when
𝐿 ≪ 𝑑0, by putting 𝑦2 − 𝑦1 ≈ 𝐿, 𝑦2 + 3𝑦1 ≈ 3𝑦2 + 𝑦1 ≈ 4𝑦𝑁 , and
𝑦1 + 𝑦2 ≈ 2𝑦𝑁 , so that

𝐵𝑖 = 𝐵0
𝐿𝑦𝑁

𝑦2
𝑁
+ 𝑑2

𝑁

,

where 𝑦2
𝑁

= 𝑑0𝑑𝑁 − 𝑑2
𝑁

, so that we recover the same expression as
in Syntelis et al. (2019), namely,

𝐵𝑖 = 𝐵0

(
𝑑0
𝑑𝑁

− 1
)1/2

𝐿

𝑑0
, (26)

which is plotted as the dashed curve in Fig. 5c.

4 CONCLUSION

Observations from the Sunrise balloon mission (Solanki 2017;
Smitha et al. 2017) and more recently from the Solar Orbiter and
Solar Probe missions have raised the possibility that magnetic recon-
nection driven by photospheric flux cancellation may be providing
an important contribution to the heating of the Sun’s atmosphere and
the acceleration of the solar wind, as suggested by Pontin et al. (2024)
building on previous proposals (Peter et al. 2019; Chitta et al. 2020;
Chen et al. 2021; Tripathi et al. 2021; Panesar et al. 2021; Raouafi
et al. 2023).

The main implication of the present work is that, when oppositely
directed fragments of photospheric magnetic flux approach one an-
other, in the build-up to flux cancellation they may drive the formation
of a current sheet between them, and so give rise to the heating and
jets of plasma that could contribute to heating the chromosphere and
corona and accelerating the solar wind. Previous analyses of energy
release by such flux cancellation (Priest et al. 2018; Priest & Syntelis
2021; Syntelis et al. 2019; Syntelis & Priest 2021) have demonstrated
that, based on newly observed flux cancellation rates, the process can
provide a significant contribution to heating the chromosphere and
corona. Here we showed that cancellation at a fin current sheet –
consistent with observations of energy release in the low atmosphere
– is likely to be even more effective and produce much more heating.
Furthermore, since the heating scales roughly as the square of the
sheet length, dropping the assumption of a small current sheet also
leads to much more heating in a floating current sheet than before.
The net result of this theory is to put the suggestion of coronal heating
by reconnection driven by flux cancellation on a much firmer foun-
dation. In future, it will be interesting to compare with simulations
designed to analyse the process in more detail.

The previous theory for reconnection by flux cancellation (Priest
et al. 2018; Priest & Syntelis 2021; Syntelis et al. 2019; Syntelis &
Priest 2021) made two assumptions that we improve upon here. The

first was that the current sheet develops about a coronal null point, to
give a so-called “floating current sheet". However, whereas the flux
from opposite-polarity flux fragments will not be connected when
they are so far apart that their separation distance exceeds the flux
interaction distance (𝑑 > 𝑑0), as soon as it becomes equal (𝑑 = 𝑑0)
and decreases further (𝑑 < 𝑑0) a null point (or separator) will form
in the solar surface and a vertical current sheet will develop and
grow. This type of current sheet we term a “fin sheet" and analyse
its growth for the first time here. If there is no reconnection, it will
grow in length as the flux sources approach, up to a maximum length
of 𝐿 = 𝑑0 as their separation tends to zero. At the same time, the
magnetic field at the sheet increases from zero up to a maximum
value of

√
3𝐵0, where 𝐵0 is the overlying field strength.

When reconnection takes place, the sheet length and inflow mag-
netic field are smaller, as shown in Fig. 2, while the rate of energy
release varies in a way shown in Fig. 3 and is usually larger than the
rate from a floating current sheet. Examining Fig. 6(b) we see that for
these parameters the rate of energy release for the fin current sheet
remains larger than the floating sheet until the flux patches are very
close to one another (while 𝑑/𝑑0 ≳ 0.1). Integrating the area under
the curves in Fig. 6(b) (and dividing by 𝑣0 = d𝑑/d𝑡) allows the total
energy released during the interaction to be quantified. For𝐶 = 1 the
fin current sheet releases approximately a factor of 5 more energy
(105.0/𝑣0 compared with 26.2/𝑣0 in non-dimensional units), while
for 𝐶 = 5 the difference in nearly a factor of 10 (23.67/𝑣0 compared
with 2.52/𝑣0).

The second assumption of previous theory that we focus on here
is that a floating current sheet possesses a very small length (much
smaller than its altitude). In Section 3 we dropped this assumption
and allowed the sheet length to grow to a substantial fraction of the
flux interaction distance (𝑑0), the actual value depending on the rate
of reconnection, as shown in Fig. 5b. Meanwhile, the inflow field
strength also varies and becomes of order the overlying field strength
as the separation between the flux sources decreases (Fig. 5c). At
the same time, the rate of energy release grows as the flux sources
approach one another, reaching a maximum value at the moment of
flux cancellation (Fig. 6a).

One argument for the existence of a floating current sheet is that the
approach of nearby photospheric flux fragments of opposite polarity
may be an intermittent process, so that the reconnection could start
and stop, allowing the current sheet to dissipate completely before
restarting as the null point (or separator) rises in the atmosphere.
Another argument is that such sheets will naturally form when new
motions of photospheric flux sources occur in fields that are already
topologically complex with null points or separators present.

Here on grounds of simplicity we have discussed current sheet
formation in simple, idealised, two-dimensional magnetic fields af-
fected by simple boundary flows, but the results are highly informa-
tive for the likely behaviour of topologically much more complex
solar magnetic fields of a non-potential three-dimensional nature.
First of all, current sheets may also form and be the location of
magnetic reconnection and energy release in non-potential magnetic
fields (e.g., Longcope 2005; Priest 2014; Pontin & Priest 2022). Fur-
thermore, they may form around both null points and separators in
three-dimensional magnetic fields of complex topology, as well as
around quasi-nulls and quasi-separators in magnetic fields of simple
topology (i.e., with no nulls or separators) but complex geometry
(e.g., Longcope 2005; Priest 2014; Pontin & Priest 2022). In addi-
tion, in a complex configuration with complex boundary flows, the
resulting current sheets may have arbitrary inclination and be curved.
Analysing such complex situations in future by both analytical and
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computational means will be a challenge but will hopefully be helped
by the understanding developed here.
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APPENDIX A: THE SOLUTION FOR 𝐿 (𝐷) FOR THE FIN
CURRENT SHEET

Eqn.(6) is of the form

𝐿 (1 + 𝐼) = 𝜋

2
𝑑0, (A1)

where

𝐼 =

∫ ∞

1

(
1 − 𝑢

√
𝑢2 − 1

𝑢2 + 𝑐

)
𝑑𝑢

and 𝑐 = 𝑑2/𝐿2. Changing the variable from 𝑢 to 𝑈, where 𝑢2 =

𝑈2 + 1, we find

𝐼 =

∫ ∞

1
𝑑𝑢 −

∫ ∞

0

𝑈2

𝑈2 + 𝑐 + 1
𝑑𝑈

or

𝐼 =

∫ ∞

1
𝑑𝑢 −

∫ ∞

0
1 − 𝑐 + 1

𝑈2 + 𝑐 + 1
𝑑𝑈

or

𝐼 =

[
arctan(𝑈/

√
𝑐 + 1)

√
𝑐 + 1

]∞
0
− 1 =

𝜋

2
√
𝑐 + 1 − 1

Thus, Equation (A1) becomes

𝐿
𝜋

2

√︄
𝑑2

𝐿2 + 1 =
𝜋

2
𝑑0,

or

𝐿2 = 𝑑2
0 − 𝑑2,

namely, Eqn.(7), as required.

APPENDIX B: EVALUATION OF FIN SHEET LENGTH (𝐿)
WHEN 𝐶 SMALL OR LARGE

The fin sheet length (𝐿) is given by Eqn.(13). When 𝐶 = 𝛼/𝑀𝐴0
is so small that 6𝐶/𝜋 = 𝜖1 ≪ 1, the solution for 𝐿 is close to
𝐿0 = (𝑑0 − 𝑑)1/2, and so may be written 𝐿 = 𝐿0 + 𝜖1𝐿1, where

𝐿1 =
15𝑑0

48(𝑑2
0 − 𝑑2)1/2

(arcsin(𝑑/𝑑0) − 𝜋/2)

+ 1
48

(8(𝑑/𝑑0)5 − 26(𝑑/𝑑0)3 + 33(𝑑/𝑑0) − 15).
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As 𝑑 tends to zero, we see that 𝐿1 tends to −5(𝜋/2 + 1)/16.
On the other hand, when𝐶 is so large that 𝜖2 = 𝜋/(6𝐶) ≪ 1, there

is a boundary layer near 𝑑 = 𝑑0 of width 𝛿 = (1/2)𝜖1/2
2 𝑑0, such that

𝐿 = 𝜖
1/4
2 𝑑 when 0 < 𝑑 < (1 − 𝛿)𝑑0 and 𝐿 = (𝑑2

0 − 𝑑0𝑑)1/2 when
1 − 𝛿 < 𝑑/𝑑0 < 1. The result of numerically integrating Eqn.(13)
with this initial condition for different values of the constant 𝐶 is
shown in Fig. 2(a) with the corresponding values of the inflow field
𝐵𝑖 to the current sheet (Eqn.(12)) in Fig. 2(b).

APPENDIX C: EVALUATION OF THE INTEGRALS 𝐼𝐵
AND 𝐼𝐶

The integral 𝐼𝐵 may be evaluated by assuming𝑌2 = 𝑌1 and changing
the variable from 𝑦 to 𝑌 , where 𝑦𝑁 − 𝑦 = 1

2 𝐿𝑌 , so that it becomes

𝐼𝐵 ≈ 1
2 𝐿

∫ 2𝑦𝑁 /𝐿

1

(𝑌2 − 1)1/2 (4𝑦𝑁 /𝐿 − 𝑌 ) + 𝑌2 − 4𝑦𝑁𝑌/𝐿
4(𝑦2

𝑁
+ 𝑑2

𝑁
)/𝐿2 − 4𝑦𝑁 /𝐿 + 𝑌2

𝑑𝑌,

which is dominated by values near the upper limit (2𝑦𝑁 /𝐿 ≫ 1),
where (𝑌2 − 1)1/2 ≈ 𝑌 − 1/(2𝑌 ) and the denominator approximates
to 4(𝑦2

𝑁
+ 𝑑2

𝑁
)/𝐿2 = 4𝑑0𝑑𝑁 /𝐿2. Thus the integral may be approxi-

mated by

𝐼𝐵 ≈ 𝐿3

8𝑑0𝑑𝑁

∫ 2𝑦𝑁 /𝐿

1

(
𝑌 − 1

2𝑌

) (
4𝑦𝑁
𝐿

− 𝑌

)
+ 𝑌2 − 4𝑦𝑁𝑌

𝐿
𝑑𝑌,

or

𝐼𝐵 ≈ − 𝑦𝑁 𝐿2

4𝑑0𝑑𝑁

∫ 2𝑦𝑁 /𝐿

1

1
𝑌
𝑑𝑌 = −

𝑦2
𝑁

4𝑑0𝑑𝑁
log𝑒

2𝑦𝑁
𝐿

,

where 𝑦𝑁 /𝑑𝑁 = (𝑑0/𝑑𝑁 − 1)1/2, so that

𝐼𝐵 ≈ −
(
𝑑0
𝑑𝑁

− 1
)1/2

𝐿2

𝑑2
0

log𝑒
𝑑0
𝐿
. (C1)

Next, the integral 𝐼𝐶 may be written

𝐼𝐶 =

∫ 𝑦𝑁

0

𝑦2
𝑁
− 𝑦2

𝑦2 + 𝑑2
𝑁

(
𝑦2
𝑁
+ 𝑑2

𝑁

𝑦2 + 𝑑2
𝑁
− 2𝑑𝑁𝐷

− 1

)
𝑑𝑦,

or

𝐼𝐶 ≈
∫ 𝑦𝑁

0

2𝑑𝑁𝐷 (𝑦2
𝑁
− 𝑦2)

(𝑦2 + 𝑑2
𝑁
)2

𝑑𝑦,

where∫
1

(𝑥2 + 𝑐2)2
𝑑𝑥 =

1
2𝑐3 arctan

𝑥

𝑐
+ 𝑥

2𝑐2 (𝑥2 + 𝑐2)
,

and∫
𝑥2

(𝑥2 + 𝑐2)2
𝑑𝑥 =

1
2𝑐

arctan
𝑥

2𝑐
− 𝑥

2𝑐(𝑥2 + 𝑐2)
,

and so, after some manipulation, our integral becomes

𝐼𝐶 = −𝐷 𝑓

(
𝑑𝑁

𝑑0

)
, (C2)

where

𝑓

(
𝑑𝑁

𝑑0

)
=

(
𝑑0
𝑑𝑁

− 2
)

arctan

√︄
𝑑0
𝑑𝑁

− 1 +

√︄
𝑑0
𝑑𝑁

− 1. (C3)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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